
Beth Definability in Expressive Description Logics

Balder ten Cate∗
UC Santa Cruz

btencate@ucsc.edu

Enrico Franconi
Free University of Bozen-Bolzano

franconi@inf.unibz.it

İnanç Seylan†
Free University of Bozen-Bolzano

seylan@inf.unibz.it

Abstract
The Beth definability property, a well-known prop-
erty from classical logic, is investigated in the con-
text of description logics (DLs): if a general L -
TBox implicitly defines an L -concept in terms of
a given signature, where L is a DL, then does there
always exist over this signature an explicit defini-
tion in L for the concept? This property has been
studied before and used to optimize reasoning in
DLs. In this paper a complete classification of Beth
definability is provided for extensions of the basic
DL ALC with transitive roles, inverse roles, role
hierarchies, and/or functionality restrictions, both
on arbitrary and on finite structures. Moreover, we
present a tableau-based algorithm which computes
explicit definitions of at most double exponential
size. This algorithm is optimal because it is also
shown that the smallest explicit definition of an im-
plicitly defined concept may be double exponen-
tially long in the size of the input TBox. Finally,
if explicit definitions are allowed to be expressed
in first-order logic then we show how to compute
them in EXPTIME.

1 Introduction
We address the Beth definability property [Beth, 1953] in the
context of description logics (DLs). The Beth definability
property relates two notions of definability in a logic L , im-
plicit definability and explicit definability. Implicit definabil-
ity is a semantic notion: it asks whether the interpretation of
a given L -concept C is fully determined by the universe of
discourse and the interpretation of some given predicates Σ
(concept and/or role names) in all models of a theory (TBox).
Explicit definability on the other hand is more syntactic: it
asks whether there is some L -conceptD over the set of pred-
icates Σ that is equivalent to C under T . Clearly, explicit de-
finability implies implicit definability. If the converse holds
as well, then the logic L is said to have the Beth definabil-
ity property. Since the Beth definability property connects
the model-theoretic notion of implicit definability to explicit
∗The author is supported by the NSF grant IIS-0905276.
†The author is also affiliated with Universität Bremen.

definability, logics having this property are considered to be
well-balanced in terms of their syntax and semantics.

Besides the theoretical interest, there are two useful ap-
plications of this property in DLs which are concerned with
rewritings. The first one is related to extracting an equiva-
lent terminology from a general TBox [Baader et al., 2003;
ten Cate et al., 2006]. A terminology consists only of acyclic
definitions for concept names and they are of particular inter-
est because reasoning with them is ‘easier’ than with general
TBoxes. For example, satisfiability of an ALC-terminology
is a PSPACE-complete problem whereas the same problem
for general ALC-TBoxes is EXPTIME-complete [Baader et
al., 2003]. The second use case is related to computing the
certain answers of a concept query given a database (DB) in-
stance (also referred to as ‘DBox’ in this context) and a TBox
that may speak about more predicates than the DB instance
[Seylan et al., 2009]. Here the idea is to find an equivalent
rewriting of the original query in terms of the predicates that
appear in the DB instance. If such a rewriting exists then
determining the certain answers of the query can be done ef-
ficiently because the problem is reduced to query answering
in relational DBs.

Both use cases involve computing explicit definitions on
the basis of implicit definitions. A vital question is what is
the complexity of this task, both in terms of the time needed
to compute the explicit definitions, and in terms of the size
of the explicit definitions obtained. This question was first
studied by ten Cate et al. for a weaker Beth definability prop-
erty which considers only concept names in the signature [ten
Cate et al., 2006]. In this paper we are interested in the more
general Beth definability property that takes into account role
names in the signature. We believe that this is more natu-
ral for DLs because in a DL knowledge base, role names are
considered to be a part of the signature.

Our contributions in this paper are as follows.

• We obtain a complete classification of the Beth definabil-
ity property for extensions of ALC with transitive roles,
inverse roles, role hierarchies, and/or functionality restric-
tions, both on arbitrary structures (BP) and on finite struc-
tures (BPF). These results are summarized in Table 1.
Note that the finite model property (FMP) of all sublog-
ics of SHOQ follows from [Lutz et al., 2005]; FMP of
all sublogics of SHIO+ follows from [Duc and Lamolle,
2010]; the failure of FMP inALCFI and all its extensions

S H I F FMP BP BPF
+ + +

• + + +
• + + +
• • - + -

• + - -
• • + - -
• • + - -
• • • - - -

• + + +
• • + + +
• • + + +
• • • - + -
• • + - -
• • • + - -
• • • + - -
• • • • - - -

Table 1: BP and BPF from ALC to SHIF

follows from [Baader et al., 2003].
• We present a constructive algorithm based on tableaux to

compute explicit definitions in ALC and all of its consid-
ered extensions having the Beth definability property. This
algorithm runs in 2-EXPTIME and computes in the worst
case an explicit definition of double exponential size if the
concept is implicitly definable. In this respect, the algo-
rithm is optimal because we also show that the smallest
explicit definition of an implicitly defined concept may be
double exponentially long in the size of the input TBox for
each of these DLs.

• We consider the case where explicit definitions are allowed
to be expressed in first-order logic. This is particularly rel-
evant for the use case for computing certain answers of a
query given a DB instance and a TBox. We present an al-
gorithm that computes a first-order explicit definition of an
implicitly defined concept in single EXPTIME for all DLs
with BP or BPF.

2 Preliminaries
We assume familiarity with the DLs ALC and SHIF
[Baader et al., 2003; Horrocks et al., 2000]. SHIF is the
theoretical basis of the Web Ontology Language OWL-Lite
[Horrocks et al., 2003]. In what follows, we will freely use
the terminology and notation from [Horrocks et al., 2000].
However for convenience of exposition, we assume role in-
clusion axioms (RIAs) to be part of the TBox instead of a
separate role hierarchy.

We will use signatures often in our definitions. The full
signature of SHIF consists of NC , NR, and NR+ ⊆ NR.
Here NC and NR are countably infinite and mutually dis-
joint sets of concept names and role names, respectively; and
NR+ is a countably infinite set of transitive role names. By
a predicate, we mean an element of NC or NR. For all
R ∈ NR, R− denotes its inverse. The set of roles is de-
fined as NR ∪ {R− | R ∈ NR}. The function Inv over roles
is defined as Inv(R) = R− if R ∈ NR, and Inv(R) = S if
R = S− for an S ∈ NR. The boolean function Trans with
domain roles is defined such that Trans(R) = 1 if and only if

R ∈ NR+ or Inv(R) ∈ NR+ .
In this paper, we will be considering several DLs that

are fragments of SHIF . Following the standard naming
scheme, letters in the name of a language indicate the con-
structors supported in that language. I stands for inverse
roles and without its presence the set of roles is equal to the
set of role names, i.e., NR. S stands for transitive role names
and without its presence the set of transitive role names NR+

is assumed to be empty. F stands for allowing ≤ 1R in the
concept language for every role R. H stands for RIAs and
without its presence the TBoxes do not contain any RIAs.
The ‘vanilla’ DL without any of these constructors is ALC.
ALC with transitive role names is denoted as S but we will
sometimes use ALCS for convenience. As usual transitive
roles and roles with transitive sub-roles are not allowed in
concepts of the form ≤ 1R in logics with S and F because
of decidability concerns [Horrocks et al., 2000]. Finally, we
use the symbol L as a placeholder for any of these DLs.

For an L -concept C0, the set sub(C0) consists of C0

and all its subconcepts. For a concept C0 and a TBox T ,
rol(C0, T) denotes the set of roles occurring in C0 or T ; and
sig(C0, T) denotes the set of concept and role names occur-
ring in C0 or T , i.e., the signature of C0 and T .

The Beth definability property, in the general sense, has
been first shown to hold for first-order logic [Beth, 1953].
Beth definability comes in different flavors and the one we
are interested in is related more to projective Beth definabil-
ity. The projective version is known be stronger than Beth’s
original formulation [Hoogland, 2001]. Beth definability for
first-order fragments used in database theory, e.g., conjunc-
tive queries, can be used as a framework for query rewriting
using exact views [Nash et al., 2010]. Besides the treatment
of the topic in first-order logic, Lang and Marquis, also moti-
vated from AI, study the propositional variant [Lang and Mar-
quis, 2008]. Beth definability has been extensively studied
for modal logics [Gabbay and Maksimova, 2005]. Because
of the presence of TBoxes, the version of the Beth definabil-
ity property we are interested in is for the global consequence
relation in modal logics [Goranko and Otto, 2007].

Constructive methods to show Beth definability in DLs
have been previously studied in [ten Cate et al., 2006;
Seylan et al., 2009; Seylan et al., 2010]. These papers also
present some results on the size of explicit definitions that can
be obtained for implicitly defined concepts. [ten Cate et al.,
2006] establish a single exponential lower bound and a triple
exponential upper bound for ALC. It is not hard to see that
the lower bound proof of [ten Cate et al., 2006] carries to the
Beth definability property we consider; and the matching sin-
gle exponential upper bound on the size of explicit definitions
was established in [Seylan et al., 2010]. Here the notion of
the ‘size’ of a concept C is subtle and one can define it either
as (i) the number of occurrences of symbols needed to write
C, or as (ii) the cardinality of the set of C’s subconcepts, i.e.,
sub(C). For example the algorithm of [Seylan et al., 2010]
implies a double exponential upper bound when one uses (i)
to measure the size of a concept instead of (ii). Therefore a
matching lower bound on the size of explicit definitions was
an open problem for the case of (i). Because of this subtlety,
we fix what we mean by size for the rest of the paper.

Definition 2.1. The size of a L -concept C0, written |C0|,
is the number of occurrences of symbols needed to write C0.
The size of a L -TBox T , written |T |, is defined analogously.

In the rest of the section, we introduce notions that are re-
lated to Beth definability.
Definition 2.2 (Implicit definability). Let C be an L -
concept, T a L -TBox, and Σ ⊆ sig(C, T). C is implicitly
definable from Σ under T if and only if for any two models I
and J of T , if
• ∆I = ∆J and
• for all P ∈ Σ, P I = PJ

then CI = CJ .
In other words, given a TBox, a concept C is implicitly

definable if the set of all its instances depends only on the
extension of the predicates in Σ. Deciding implicit definabil-
ity in L means, given an L -concept C, L -TBox T , and
a set of predicates Σ ⊆ sig(C, T), to check whether C is
implicitly definable from Σ under T . For every predicate
P ∈ sig(C, T) \ Σ, introduce a new predicate P ′ which is
not in sig(C, T). Now let C̃ (T̃) be the concept (TBox) ob-
tained by replacing every occurrence of a predicate P 6∈ Σ in
C (T) by P ′. The following lemma provides an alternative,
more syntactic definition of implicit definability. In partic-
ular, it reduces implicit definability in L to the entailment
problem in L .
Lemma 2.3. Let C be a L -concept, T be a L -TBox, and
Σ ⊆ sig(C, T). Then C is implicitly definable from Σ under
T if and only if T ∪ T̃ |= C ≡ C̃.

It is also possible to reduce TBox-unsatisfiability to im-
plicit definability.
Lemma 2.4. Let T be a L -TBox and let A0 be a concept
name that does not appear in T . Then T is unsatisfiable if
and only if A0 is implicitly definable from sig(T) under T .

By Lemmas 2.3 and 2.4, the following theorem follows
immediately, given that the concept satisfiability problem for
each of these DLs is EXPTIME-complete.
Theorem 2.5. In ALC and any of its extensions with
constructors from {S,H, I,F}, implicit definability is
EXPTIME-complete.

If a concept is implicitly definable from Σ, then it may
be possible to find an expression using only predicates in Σ
whose instances are the same as in the original concept: this
would be its explicit definition.
Definition 2.6 (Explicit definability). Let C be a L -concept,
T a L -TBox, and Σ ⊆ sig(C, T). C is explicitly definable
from Σ under T if and only if there is some L -concept D
such that T |= C ≡ D and sig(D) ⊆ Σ. Such a D is called
an explicit definition of C from Σ under T .
Proposition 2.7. Let C be a L -concept, T a L -TBox, and
Σ ⊆ sig(C, T). If C is explicitly definable from Σ under T
then C is implicitly definable from Σ under T .
Definition 2.8 (Beth definability property). L has the Beth
definability property (BP) if for all L -concepts C, all L -
TBoxes T , and all signatures Σ ⊆ sig(C, T), if C is implic-
itly definable from Σ under T then C is explicitly definable
from Σ under T .

Clearly, we can restrict the role names that are allowed to
appear in our explicit definitions by putting these role names
into Σ. Let us call the version of BP that does not restrict
role names but only concept names occurring in the explicit
definitions the concept name BP (CBP). That is in CBP, we
look for explicit definitions over subsets of Σ ∪NR.

A logic may lack the finite model property (FMP) and in
some cases it is more natural to consider only finite models.
This is also the approach taken in DB theory. For example, in
a DL KB with a DB instance, the purpose of the DB instance
is to fix the extension of some predicates [Seylan et al., 2009].
Some DLs lack FMP and because of this the TBox may en-
force the DB instance to be infinite, i.e., the DB instance can
not be fixed.
Definition 2.9 (Finite model property). An interpretation is
said to be finite if it has a finite domain. A DL L is said to
have the finite model property (FMP) if for every L -concept
C and every L -TBox T , if C is satisfiable w.r.t. T then there
is some finite interpretation I such that I is a model of T and
CI 6= ∅.

A relevant question in this case is if the Beth definabil-
ity property holds when one restricts attention to finite mod-
els. For example, Beth definability, when restricted to finite
models, fails in first-order logic [Hoogland, 2001] although it
holds in the unrestricted case. In this paper, we therefore also
investigate BP restricted to finite interpretations. We call this
version of the problem Beth definability property in the finite
(BPF). Instead of redefining the relevant notions for BPF, we
assume that all our definitions are the same except that we
replace the word ‘model’ with ‘finite model’ and the symbol
|= with |=f , where |=f considers only finite models. We call
this version of implicit (explicit) definability f-implicit (resp.
f-explicit) definability when we want to be precise.

If L has FMP then BP are BPF are equivalent because of
Lemma 2.3 and the fact that |= coincides with |=f . Hence it
only makes sense to consider BPF in logics without FMP.

3 Constructive Interpolation with Tableaux
This section provides a constructive proof of an interpolation
property which will be the essential part of the proof of BP
in Section 4. Resorting to interpolation to show the Beth de-
finability property in a logic has been a standard technique
since Craig’s seminal paper [Craig, 1957]. We start by defin-
ing what we mean by an interpolant and then state the main
result of this section.
Definition 3.1 (Interpolant). Let C,D be L -concepts and let
T1, T2 be L -TBoxes such that T1 ∪ T2 |= C v D. An L -
concept I is called an interpolant of C and D under 〈T1, T2〉
if the following conditions hold:
• sig(I) ⊆ sig(C, T1) ∩ sig(D, T2),
• T1 ∪ T2 |= C v I , and
• T1 ∪ T2 |= I v D.

Theorem 3.2. Let L be ALC or any of its extensions with
constructors from {S, I,F}. For all L -concepts C1, C2 and
all L -TBoxes T1, T2, if T1 ∪ T2 |= C1 v C2 then there exists
an interpolant of C1 and C2 under 〈T1, T2〉 that can be com-
puted in time double exponential in |T1|+ |T2|+ |C1|+ |C2|.

The proof of Theorem 3.2 consists of two stages. First
Theorem 3.2 is shown to hold for ALC and ALCF directly
using a worst-case optimal tableau algorithm in the style of
Goré and Nyugen [Goré and Nguyen, 2007]. Then we show
that Theorem 3.2 holds for extensions of ALC and ALCF
via satisfiability and signature preserving reductions to ALC
and ALCF .

It will be convenient for us to assume that concepts are in
negation normal form (NNF) in the rest of the section. This
is w.l.o.g. if we take e.g. ∀R.C not as an abbreviation of
¬∃R.¬C but as a primitive constructor of the language. The
NNF of the complement of a concept C is written ¬̇C. Again
w.l.o.g., we assume that a TBox consists only of axioms of
the form > v C.

Definition 3.3. Let C0 be an ALCF-concept (ALCFI-
concept) and let T be an ALCF-TBox (ALCFI-TBox). The
concept closure cl(C0, T) of C0 and T is the smallest set of
concepts satisfying the following conditions:

• C0 ∈ cl(C0, T);
• if > v C ∈ T then C ∈ cl(C0, T);
• if C ∈ cl(C0, T) and D ∈ sub(C) then D ∈ cl(C0, T);
• {≤ 1R,∃R.C} ⊆ cl(C0, T) then ∀R.C ∈ cl(C0, T).

For the rest of this section, fix two ALCF-concepts C0

and D0, and three ALCF-TBoxes Tl, Tr, and T such that
Tl ∪ Tr = T . l stand for left and r for right and it is a nam-
ing scheme adopted from [Fitting, 1996]. It will allows us to
identify from which TBox (Tl or Tr) or concept (C0 or D0)
an inference is made.

A biased concept is an expression of the form Cλ, where
C is anALCF-concept and λ ∈ {l, r} is a bias. Two relevant
biased concept closures cll and clr are defined as follows.

cll = {Cl | C ∈ cl(C0, Tl)} and clr = {Cr | C ∈ cl(¬̇D0, Tr)}.

We use the Greek letters λ, κ to denote a bias.

Definition 3.4. Let Φ ⊆ cll ∪ clr. Then

• (C1 uC2)λ is an u-burden of Φ iff (C1 uC2)λ ∈ Φ and
{(C1)λ, (C2)λ} 6⊆ Φ;
• (C1 tC2)λ is an t-burden of Φ iff (C1 tC2)λ ∈ Φ and
{(C1)λ, (C2)λ} ∩ Φ = ∅;
• (≤ 1R)λ is an ≤ 1-burden of Φ iff (≤ 1R)λ ∈ Φ and
{(∀R.C)κ | (∃R.C)κ ∈ Φ} 6⊆ Φ;
• (∃R.C)λ is an ∃-burden of Φ iff (∃R.C)λ is in Φ;
• (≥ 2R)λ is an ≥ 2-burden of Φ iff (≥ 2R)λ is in Φ.

A burden of Φ is any type of burden from above.

Definition 3.5. Let Φ ⊆ cll ∪ clr, Cλ be a burden of Φ, and
S = {Dl | > v D ∈ Tl} ∪ {Dr | > v D ∈ Tr}. Then
Ψ ⊆ cll ∪ clr is called the Cλ-relief of Φ if

• C = (C1 u C2)λ and Ψ = {(C1)λ, (C2)λ} ∪ Φ;
• C = (C1 t C2)λ and either Ψ = Φ ∪ {(C1)λ} or Ψ =

Φ ∪ {(C2)λ};
• C = (≤ 1R)λ and Ψ = Φ ∪ {(∀R.C)κ | (∃R.C)κ ∈ Φ};
• C = (∃R.C)λ and Ψ = {Cλ}∪{Dκ | (∀R.D)κ ∈ Φ}∪S;
• C = (≥ 2R)λ and Ψ = {Dκ | (∀R.D)κ ∈ Φ} ∪ S.

For all Φ ⊆ cll ∪ clr, we define

Φ(l) = {C | Cl ∈ Φ ∩ cll} and Φ(r) = {C | Cr ∈ Φ ∩ clr}.

The Ru rule
Condition: (C1 u C2)λ is an u-burden of g.content.
Action: g′.content ← Φ, where Φ is the (C1 u C2)λ-relief of

g.content.
The Rt rule
Condition: (C1 t C2)λ is an t-burden of g.content.
Action: g1.content← Φ1 and g2.content← Φ2,

where Φ1,Φ2 are (C1 t C2)λ-reliefs of Φ.
The R≤1 rule
Condition: (≤ 1R)λ is an≤ 1-burden of g.content.
Action: g′.content← Φ, where Φ is the (≤ 1R)λ-relief of g.content.
The R∃ rule
Condition: Φ = {(C1)λ1 , . . . , (Cn)λn} such that Cλ ∈ Φ iff Cλ is

an ∃- or≥ 2-burden of g.content.
Action: For 1 ≤ i ≤ n,

gi.content ← Φi, where Φi is the (Ci)
λi -relief of

g.content.

Figure 1: Tableau expansion rules for ALCF .

Φ(λ) is a shorthand for Φ(l) ∪ Φ(r). In the following the
signature of a set of ALCF-concepts S will be of concern.
We define sig(S) =

⋃
C∈S sig(C).

A biased 〈C0 v D0, T 〉-tableau (〈C0 v D0, T 〉-tableau
for short) is a directed graph 〈V, E〉, where V is the set of
nodes and E ⊆ V × V is the set of edges. We associate three
different labels to nodes in V .

1. content : V → 2cll∪clr,
2. type : V → {and-node,or-node},
3. status : V → {sat,unsat},
4. int : V → ALCF

The function of these labels are explained when they are used.
We say that a node g in a tableau contains a clash if and

only if either one of the following holds.
• ⊥λ ∈ g.content,
• {Aλ, (¬A)κ} ⊆ g.content,
• {(≤ 1R)λ, (≥ 2R)κ} ⊆ g.content.

The tableau expansion rules given in Figure 1 expand a
tableau by making use of the semantics of concepts. A rule is
said to be applicable to a node g if and only if its condition
is satisfied in g, no rule was applied to g before, and g does
not contain a clash. In order to guarantee a finite expansion,
we use proxies in the following way. Whenever a rule cre-
ates a new node g′ from g, before attaching the edge 〈g, g′〉
to E , the tableau is searched for a node g′′ ∈ V such that
g′.content = g′′.content. If such a g′′ is found then the edge
〈g, g′′〉 is added to E and g′ is discarded.

We are interested in deciding T |= C0 v D0. The tableau
algorithm consists of two phases. The first phase starts with
the initial 〈C0 v D0, T 〉-tableau T = 〈{g0}, ∅〉, where
g0.content = {(C0)l, (¬̇D0)r}∪{El | > v E ∈ Tl}∪{Er |
> v E ∈ Tr}. T is then expanded by repeatedly applying
the tableau expansion rules in such a way that if more than
one rule is applicable to a node at the same time then the first
applicable rule in the list [Ru,Rt,R≤1,R∃] is chosen. If Rt
has been applied to a node g then we set g.type← or-node,
and if some rule other than Rt has been applied to g we set
g.type ← and-node. The first phase continues as long as
some rule is applicable to T.

A 〈C0 v D0, T 〉-tableau is called complete if and only
if it is the output of the first phase of the tableau algorithm.

Let T be a complete 〈C0 v D0, T 〉-tableau. The purpose of
the second phase of the tableau algorithm, i.e., Algorithm 1,
is to assign a status to every node in T and to calculate a
concept int(g) for every g ∈ V with an unsatisfiable content.
To this aim, it uses the interpolant calculation rules which are
presented in Figure 2.

Algorithm 1 Second phase of the tableau algorithm
Propagate: Do

• done← true.

• For every g ∈ V with g.status 6= unsat:

– if g contains a clash then (i) g.status ← unsat, (ii) apply one of
{Cl
⊥,C

r
⊥,C

ll
¬,C

rr
¬ ,C

lr
¬ ,C

rl
¬}, one whose condition is satisfied, (iii)

done← false.
– if g.type = and-node and there is some direct successor g′ of g such

that g′.status = unsat then (i) g.status ← unsat, (ii) apply one of
{Cu,Cl 6R

≤1,C
r6R
≤1,C

lR
≤1,C

rR
≤1,C

l 6R
∃ ,C

r6R
∃ ,ClR

∃ ,C
rR
∃ }, one whose con-

dition is satisfied, (iii) done← false.
– if g.type = or-node and for all direct successors g′ of g we have
g′.status = unsat then (i) g.status ← unsat, (ii) apply one of
{Cl
t,C

r
t}, one whose condition is satisfied, (iii) done← false.

while done = false.
Assign:

For every g ∈ V with g.status 6= unsat, g.status← sat.

Let T = 〈V, E〉 be a complete 〈C0 v D0, T 〉-tableau
which is an output of the second phase. T is said to be open if
and only if g0.status = sat; and it is said to be closed if and
only if g0.status = unsat. If T is determined to be open
after the second phase, then the tableau algorithm returns
“T 6|= C0 v D0”, otherwise it returns “T |= C0 v D0”.

The tableau algorithm is a decision procedure for con-
cept subsumption (and satisfiability) in ALCF . Although a
complete tableau can be constructed in EXPTIME, the inter-
polants calculated in the second phase may be double expo-
nentially long. Hence the algorithm runs in 2-EXPTIME. If
T |= C0 v D0 then one can show that int(g0) is the inter-
polant we are looking for and this is the idea behind the proof
of the following theorem.
Theorem 3.6. For allALCF-concepts C,D and allALCF-
TBoxes T1, T2 if T1 ∪ T2 |= C v D then there exists an
interpolant of C and D under 〈T1, T2〉 that can be computed
in time double exponential in |T1|+ |T2|+ |C|+ |D|.

Now Theorem 3.2, which extends Theorem 3.6 to more
logics, can be shown to hold as follows. For ALC, we have
that the tableau algorithm for ALCF also decides concept
satisfiability w.r.t. a TBox in ALC. Using the fact that in any
execution of the algorithm for input inALC, one can observe
that R≤1 will never be applied and the interpolant calculation
rules from Figure 2 will never produce concepts of the form
≤ 1R or ≥ 2R. Hence the output interpolant, if there is any,
will be inALC. For more expressive logics, the proof is more
involved and requires the following reductions.
Definition 3.7. Let C0 be a SIF-concept and T be a SIF-
TBox. Then τS(C0, T) is defined as the ALCFI-TBox T ∪
T ′, where
T ′ = {∀R.C v ∀R.∀R.C | ∀R.C ∈ cl(C0, T) and Trans(R)}.

[Tobies, 2001] shows that a SIF-concept C0 is satisfiable
w.r.t. a SIF-TBox T if and only if C0 is satisfiable w.r.t. the

The Cl
⊥ rule

Condition: ⊥l ∈ g.content.
Action: int(g)← ⊥
The Cr

⊥ rule
Condition: ⊥r ∈ g.content.
Action: int(g)← >
The Cll

¬ rule
Condition: {Al, (¬A)l} ⊆ g.content.
Action: int(g)← ⊥
The Crr

¬ rule
Condition: {Ar, (¬A)r} ⊆ g.content.
Action: int(g)← >
The Clr

¬ rule
Condition: {Al, (¬A)r} ⊆ g.content.
Action: int(g)← A

The Crl
¬ rule

Condition: {Ar, (¬A)l} ⊆ g.content.
Action: int(g)← ¬A
The Cu rule
Condition: g′.content is the (C1 u C2)λ-relief of g.content.
Action: int(g)← int(g′).
The Cl

t rule
Condition: g1.content, g2.content are (C1 t C2)l-reliefs of g.content.
Action: int(g)← int(g1) t int(g2).
The Cr

t rule
Condition: g1.content, g2.content are (C1 t C2)r-reliefs of g.content.
Action: int(g)← int(g1) u int(g2).
The Cl6R

≤1 rule
Condition: g′.content is the (≤ 1R)l-relief of g.content and

there is no biased concept of the form (∃R.C)r ∈ g.content.
Action: int(g)← int(g′).
The Cr6R

≤1 rule
Condition: g′.content is the (≤ 1R)r-relief of g.content and

there is no biased concept of the form (∃R.C)l ∈ g.content.
Action: int(g)← int(g′).
The ClR

≤1 rule
Condition: g′.content is the (≤ 1R)l-relief of g.content and

there is some biased concept of the form (∃R.C)r ∈ g.content.
Action: int(g)← int(g′)u ≤ 1R.
The CrR

≤1 rule
Condition: g′.content is the (≤ 1R)r-relief of g.content and

there is some biased concept of the form (∃R.C)l ∈ g.content.
Action: int(g)← int(g′)t ≥ 2R.
The Cl6R

∃ rule
Condition: g′.content is the (∃R.C)l- or (≥ 2R)l-relief of g.content,

there is no biased concept of the form (∀R.D)r ∈ g.content.
Action: int(g)← ⊥.
The Cr6R

∃ rule
Condition: g′.content is the (∃R.C)r- or (≥ 2RC)r-relief of g.content,

there is no biased concept of the form (∀R.D)l ∈ g.content.
Action: int(g)← >.
The ClR

∃ rule
Condition: g′.content is the (∃R.C)l- or (≥ 2R)l-relief of g.content,

there is some biased concept of the form (∀R.D)r ∈
g.content.

Action: int(g)← ∃R.int(g′).
The CrR

∃ rule
Condition: g′.content is the (∃R.C)r- or (≥ 2R)r-relief of g.content,

there is some biased concept of the form (∀R.D)l ∈ g.content.
Action: int(g)← ∀R.int(g′).

Figure 2: Interpolant calculation rules for ALCF .

ALCFI-TBox τS(C0, T). Using this result, one can prove
Lemma 3.8.
Lemma 3.8. Let T1, T2 be SIF-TBoxes and let C1, C2 be
SIF-concepts. Then

T1∪T2 |= C1 v C2 iff τS(C1, T1)∪τS(¬̇C2, T2) |= C1 v C2.

We need a similar reduction to eliminate inverse roles.
What is different from the previous reduction is that the sig-
nature of the original TBox is slightly modified in the result-

ing TBox. Let C0 be an ALCFI-concept and let T be an
ALCFI-TBox. For each inverse role R− ∈ rol(C0, T), in-
troduce a new role name Rc which is not in rol(C0, T). Now
let ζ be the total function with domain cl(C0, T) such that
ζ(C) is obtained from C ∈ cl(C0, T) by replacing every in-
verse role R− occurring in C by Rc. We extend ζ to T as
follows.

ζ(T) = {> v ζ(C) | > v C ∈ T }

Definition 3.9. Let C0 be an ALCFI-concept and let T be
an ALCFI-TBox. Then τI(C0, T) is defined as the ALCF-
TBox ζ(T)∪T ′, where T ′ is equal to the union of the follow-
ing:
• {¬̇ζ(C) v ∀R.∃Rc.¬̇ζ(C) | ∀R−.C ∈ cl(C0, T), R ∈ NR},
• {¬̇ζ(C) v ∀Rc.∃R.¬̇ζ(C) | ∀R.C ∈ cl(C0, T), R ∈ NR}.
[Calvanese et al., 2001] show that an ALCFI-concept C0

is satisfiable w.r.t. an ALCFI-TBox T if and only if the
ALCF-concept ζ(C0) is satisfiable w.r.t. the ALCF-TBox
τI(C0, T). Using this result, one can prove Lemma 3.10.

Lemma 3.10. Let T1, T2 be ALCFI-TBoxes and let C1, C2

be ALCFI-concepts. Then T1 ∪ T2 |= C1 v C2 iff

τI(C1, T1) ∪ τI(¬̇C2, T2) |= ζ(C1) v ζ(C2).

Now the proof of Theorem 3.2 can be summarized as fol-
lows. Given L -TBoxes T1, T2 and L -concepts C1, C2, we
reduce, by Lemma 3.8 and Lemma 3.10, T1∪T2 |= C1 v C2

to T ′1 ∪ T ′2 |= C ′1 v C ′2, where T ′1 , T ′2 are ALC- (ALCF-
) TBoxes and C ′1, C

′
2 are ALC- (ALCF-) concepts. If

T ′1 ∪ T ′2 |= C ′1 v C ′2 holds then we know by Theorem 3.6
that there is an interpolant I in ALC (ALCF). It is possible
to show, by Lemma 3.8 and Lemma 3.10 again, that I yields
an interpolant in L .

[Seylan et al., 2009] also present a procedure for comput-
ing interpolants in ALC in 2-EXPTIME. This procedure is
based on a non-optimal tableau algorithm. An advantage of
our algorithm is that it allows us to compute first-order in-
terpolants in EXPTIME by using a succinct representation
of concepts assigned to int(g). This is formalized in Theo-
rem 3.11.

Theorem 3.11. Let L be ALC or any of its extensions with
constructors from {S, I,F}. For all L -concepts C, D and
L -TBoxes T1, T2, if T1 ∪ T2 |= C v D then there exists a
first-order formula ϕ(x) such that ϕ(x) is equivalent to an
interpolant I of C andD under 〈T1, T2〉, sig(ϕ(x)) ⊆ sig(I),
andϕ(x) can be computed in time single exponential in |T1|+
|T2|+ |C|+ |D|.

The proof of Theorem 3.11 proceeds along the follow-
ing lines. First we show that the double exponential size
of the interpolants is only due to the repeated occurrence of
subformulas and that our algorithm yields single exponential
size interpolants using a succinct (DAG-shaped as opposed to
tree-shaped) concept representation. Next we use a result of
Avigad [Avigad, 2003] showing that succinctly represented
first-order formulas can be transformed in polynomial time
into equivalent ordinary tree-shaped first-order formulas over
structures with at least two elements. This allows us to com-
pute single exponential first-order interpolants over structures

with at least two elements. After that, we show that single
exponential interpolants over structures with one element can
be constructed by a reduction to propositional logic. By com-
bining the interpolants obtained via these two methods, we
finally obtain the desired single exponential first-order inter-
polant over arbitrary structures.

4 Results on Beth Definability
In this section, we present the main technical contributions of
the paper. We start by a positive result on BP which is a direct
application of the interpolation theorem, i.e., Theorem 3.2.

Theorem 4.1 (BP). Let L be ALC or any of its extensions
with constructors from {S, I,F}. Then for all L -concepts
C, all L -TBoxes T , and all signatures Σ ⊆ sig(C, T), if
C is implicitly definable from Σ under T then C is explicitly
definable from Σ under T , and the explicit definition ofC can
be computed in time double exponential in |T |+ |C|.

Proof. Let L be one of the DLs stated in the theorem, C be
an L -concept, T be an L -TBox, and Σ ⊆ sig(C, T) such
that C is implicitly definable from Σ under T . We have that
T ∪ T̃ |= C ≡ C̃ by Lemma 2.3. Now by Theorem 3.2,
there is an interpolant I of C and C̃ under 〈T , T̃ 〉 that can be
computed in time double exponential in |T |+|T̃ |+|C|+|C̃|.
Since it is an interpolant, sig(I) ⊆ sig(C, T) ∩ sig(C̃, T̃) =
Σ, and both (a) T ∪ T̃ |= C v I and (b) T ∪ T̃ |= I v C̃.
By (b) and T ∪ T̃ |= C̃ v C, we have T ∪ T̃ |= I v C, from
which T ∪ T̃ |= C ≡ I follows by (a). From the structure of
T̃ , it now straightforwardly follows that T |= C ≡ I .

As for the time needed to compute I , observe that |T | +
|T̃ |+ |C|+ |C̃| = 2 · (|T |+ |C|). Hence I can be computed
in time double exponential in |T |+ |C|.

The proof of Theorem 4.1 uses Theorem 3.2. Similarly,
if we use Theorem 3.11 instead, we can show that first-order
explicit definitions of implicitly defined concepts can be com-
puted in EXPTIME. Note that Theorem 4.1 also establishes a
double exponential upper bound on the size explicit defini-
tions in the considered logics. This upper bound is optimal
because explicit definitions in L can be inherently very big.

Theorem 4.2 (Explicit definition lower bound). For every
n ∈ N, there is an ALC-concept Cn and an ALC-TBox Tn
such that |Tn| and |Cn| are polynomial in n, Cn is implic-
itly definable from some Σ ⊆ sig(Cn, Tn) under Tn, and the
smallest explicit definition of Cn is double exponentially long
in n.

Proof. LetA1, . . . , An be concept names and letR,S be role
names. For k ∈ {1, . . . , n},
• let Xk = ¬A1 u . . . u ¬Ak−1 uAk and

• let Yk = A1 u . . . uAk−1 u ¬Ak.

Note that Xk and Yk are just abbreviations, not concept
names. Now define the ALC-TBox Tn as follows.

• ¬A1 u . . . u ¬An v ∀R.⊥ u ∀S.⊥
• A1 t . . . tAn v ∃R.> t ∃S.>

• For k = 1 . . . n and σ ∈ {R,S},
Xk v ∀σ.Yk ul

k<l≤n

((Al u ∀σ.Al) t (¬Al u ∀σ.¬Al))

Note that |Tn| is polynomial in n and that Tn is satisfiable.
If I is a model of Tn, we have for every s ∈ ∆I and every
i ∈ {1, . . . , n}, either s ∈ AIi or s ∈ (¬Ai)I by the virtue of
I being an interpretation. Therefore every s ∈ ∆I is assigned
a unique number between 0, . . . , 2n − 1 that is expressed in
terms of concept names A1, . . . , An. For convenience, we
will write e.g., 5 for A3 u ¬A2 uA1 when n = 3.

Now define concepts C0 . . . C2n−1 as follows.

C0 = ∀R.⊥ u ∀S.⊥
Ci = ∃R.Ci−1 t ∃S.Ci−1

Intuitively, Ci has the shape of a binary tree (due to role
names R,S) and the height of the tree is exponential in i.
This implies |C2n−1| is double exponential in n. Moreover,
we have for every i ∈ {0, . . . , 2n − 1}, Tn |= i ≡ Ci. This
means i is explicitly (and thus by Proposition 2.7 implicitly)
definable from {R,S} under Tn. The rest of the proof goes
on to show that there is no shorter concept than Ci that is
an explicit definition of i from {R,S} under Tn. In order to
show this, we use the path-set construction from [Lutz, 2006].

In conclusion, Tn |= 2n − 1 ≡ C2n−1, |C2n−1| is dou-
ble exponential in n, and there is no shorter concept C than
C2n−1 that is an explicit definition of 2n − 1 from {R,S}
under Tn. Hence the lower bound follows.

Note that by the role disjunction constructor which is not
present inALC, one could get away with a single exponential
explicit definition. Also note that the lower bound argument
works for CBP as well. In fact, one just seeks an explicit
definition over Σ = ∅ in this case.

Note that by Theorems 4.2 and 4.1, we have that implicit
definitions using general TBoxes are double exponentially
more succinct than acyclic concept definitions. This closes
the open problem of [ten Cate et al., 2006] about the size of
explicit definitions. Moreover, the same theorems also estab-
lish an exact bound on the size of equivalent rewritings of
concept queries as considered in [Seylan et al., 2009].

By the following theorem, we have that BP fails in the
considered logics having H. This shows that BP is indeed
a stronger property than CBP because the same logics have
CBP [ten Cate et al., 2006] (cf. Section 2). The theorem
also implies that the claim in [Seylan et al., 2010] stating
that ALCH and its extensions with S and/or I have BP is
incorrect.
Theorem 4.3. Let L be ALCH or any of its extensions with
constructors from {S, I,F}. Then L does not have BP.

Proof. Consider the ALCH-TBox T which consists of

S v R1

S v R2

∃R1.A u ∀S.⊥ v ∀R2.¬A
∃R1.¬A u ∀S.⊥ v ∀R2.A

It is easy to see that T is satisfiable. For an interpretation I,
define XI = {s ∈ ∆I | ∃t ∈ ∆I .〈s, t〉 ∈ RI1 ∩ RI2 }. We
have that for all models I of T , (∃S.>)I = XI . This implies
that ∃S.> is implicitly definable from Σ = {R1, R2} under
T .

We now show that there is no ALCFI-concept C such
that sig(C) ⊆ Σ and T |= ∃S.> ≡ C. To this aim, let
I = 〈∆I , ·I〉 be the interpretation where

• ∆I = {s, t},
• RI1 = RI2 = SI = {〈s, t〉};
• BI = ∅, for all B ∈ NC .

Let J = 〈∆J , ·J 〉 be the interpretation where

• ∆J = {w, v, a, b},
• RJ1 = {〈w, a〉, 〈v, b〉}, RJ2 = {〈w, b〉, 〈v, a〉}, SJ = ∅;
• AJ = {a} and for all B ∈ (NC \ {A}), BJ = ∅.

I and J are models of T . Using a bisimulation argu-
ment, one can show that s and w satisfy the same ALCFI-
concepts formulated over Σ. But clearly, s ∈ (∃S.>)I and
w 6∈ (∃S.>)J .

Now let L be as stated in the theorem, i.e., it is ei-
ther ALCH or any of its extension with constructors from
{S, I,F}. Since the concept language of SHIF is same as
the concept language of ALCFI and no transitive role oc-
curs in T , we have that ∃S.> is not explicitly definable from
Σ under T in SHIF . But then there is no explicit definition
in L . Hence L does not have BP.

As discussed in Section 2, it also makes sense to study BPF.
However in the considered logics lacking FMP, BPF fails.

Theorem 4.4. Let L be ALCFI or any of its extensions
with constructors from {S,H}. Then L does not have BPF.

Proof. Let A,B,X be concept names and let R be a role
name. Consider the ALCFI-TBox T which consists of the
following.

> v ≤ 1R−

B v ∃R.B
A v X

∃R.(A u ¬B) v ¬X
∃R.¬X v ¬X

It is easy to see that the concept A u B is finitely satisfiable
w.r.t. T , i.e., there is some finite model I of T such that (Au
B)I 6= ∅. In fact, we provide two such models In and Jn
later on in the proof.

Now for all interpretations, define

YI = {s ∈ ∆I | ∃t ∈ ∆I .〈s, t〉 ∈ (RI)+ ∧ t ∈ AI} ∩AI

where (RI)+ is the transitive closure of RI . We claim that
for all finite models I of T , we have (A u B)I = YI . In
particular, this implies A u B is f-implicitly definable from
Σ = {R,A} under T .

For some n ∈ N, we will define in the following two inter-
pretations In,Jn. Let s0, . . . , s2n+1 be all distinct elements

and define In = 〈{s0, . . . , s2n+1}, ·In〉 to be the interpre-
tation which consists of the R-cycle1 s0, s1, . . . , s2n+1, s0,
where AIn = {s0}, XIn = {s0}, and BIn = ∆In ; and
define Jn = 〈{s0, . . . , s2n+1} \ {sn+1}, ·Jn〉 to be the inter-
pretation which consists of the R-path

sn+2, sn+3, . . . , s2n+1, s0, s1, . . . , sn

where AJn = {s0}, XJn = {s0}, and BJn = ∅.
Observe that In and Jn are (finite) models of T , and Jn is

the subinstance of In where the element sn+1 is removed.

Claim 4.5. For everyALCFI-conceptC such that sig(C) ⊆
Σ = {R,A} and md(C) ≤ n, where md(C) is the modal
depth of C, it holds that s0 ∈ CI iff s0 ∈ CJ .

The claim follows from the fact that the subinstances of
In and Jn containing all nodes at distance at most n from
s0 are isomorphic. Now we have that s0 ∈ (A u B)I and
s0 6∈ (A u B)J . But by the previous claim, s0 in I satisfies
exactly the same concepts as s0 in J that are formulated over
Σ and with modal depth ≤ n. Since we can come up with
such witness models for every n, there exists no ALCFI-
concept C such that sig(C) ⊆ Σ and T |=f A u B ≡ C.
This means A u B is not f-explicitly definable from Σ under
T . Hence ALCFI does not have BPF.

Let L be any proper extension of ALCFI with construc-
tors from {S,H}. Since T and A u B are respectively an
L -TBox and an L -concept, and the concept languages of
ALCFI and L are the same, we have that L does not have
BPF.

5 Discussion
Qualified number restrictions, denoted by Q in the language,
is a generalization of F . Extending our upper bound results
on the size of explicit definitions to ALCQ and ALCQI ap-
pears to be difficult. This is because of the unavailability of
a natural and optimal tableau algorithm for these logics. We
leave as another open problem the lower bound on the size of
the first-order explicit definition given that a concept is im-
plicitly defined under a TBox.

References
[Avigad, 2003] Jeremy Avigad. Eliminating definitions and

skolem functions in first-order logic. ACM Trans. Comput.
Logic, 4:402–415, July 2003.

[Baader et al., 2003] Franz Baader, Diego Calvanese, Deb-
orah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook:
Theory, Implementation, and Applications, 2003.

[Beth, 1953] E. W. Beth. On Padoa’s methods in the theory
of definitions. Indagationes Mathematicae, 15:330–339,
1953.

[Calvanese et al., 2001] Diego Calvanese, Giuseppe De Gia-
como, Maurizio Lenzerini, and Daniele Nardi. Reasoning
in expressive description logics. In Handbook of Auto-
mated Reasoning, pages 1581–1634, 2001.

1an R-path such that the start and the end nodes are the same

[Craig, 1957] William Craig. Three uses of the herbrand-
gentzen theorem in relating model theory and proof theory.
The Journal of Symbolic Logic, 22(3):269–285, 1957.

[Duc and Lamolle, 2010] Chan Le Duc and Myriam Lam-
olle. Decidability of description logics with transitive clo-
sure of roles in concept and role inclusion axioms. In De-
scription Logics, 2010.

[Fitting, 1996] Melvin Fitting. First-order logic and auto-
mated theorem proving (2nd ed.). Springer-Verlag, 1996.

[Gabbay and Maksimova, 2005] Dov M. Gabbay and Larisa
Maksimova. Interpolation and Definability in Modal Log-
ics (Oxford Logic Guides). Clarendon Press, 2005.

[Goranko and Otto, 2007] Valentin Goranko and Martin
Otto. Model theory of modal logic. In Handbook of Modal
Logic, pages 249 – 329. Elsevier, 2007.

[Goré and Nguyen, 2007] Rajeev Goré and Linh Anh
Nguyen. Exptime tableaux for ALC using sound global
caching. In Description Logics, 2007.

[Hoogland, 2001] Eva Hoogland. Definability and Interpo-
lation: Model-theoretic investigations. PhD thesis, Uni-
versity of Amsterdam, 2001.

[Horrocks et al., 2000] Ian Horrocks, Ulrike Sattler, and
Stephan Tobies. Practical reasoning for very expressive
description logics. Logic Journal of the IGPL, 8(3):239–
264, 2000.

[Horrocks et al., 2003] Ian Horrocks, Peter F. Patel-
Schneider, and Frank van Harmelen. From SHIQ and
RDF to OWL: The making of a web ontology language.
J. of Web Semantics, 1(1):7–26, 2003.

[Lang and Marquis, 2008] Jérôme Lang and Pierre Marquis.
On propositional definability. Artif. Intell., 172:991–1017,
May 2008.

[Lutz et al., 2005] Carsten Lutz, Carlos Areces, Ian Hor-
rocks, and Ulrike Sattler. Keys, nominals, and concrete
domains. J. Artif. Intell. Res. (JAIR), 23:667–726, 2005.

[Lutz, 2006] Carsten Lutz. Complexity and succinctness of
public announcement logic. In AAMAS, pages 137–143,
2006.

[Nash et al., 2010] Alan Nash, Luc Segoufin, and Victor
Vianu. Views and queries: Determinacy and rewriting.
ACM Trans. Database Syst., 35(3), 2010.

[Seylan et al., 2009] Inanç Seylan, Enrico Franconi, and Jos
de Bruijn. Effective query rewriting with ontologies over
DBoxes. In IJCAI, pages 923–929, 2009.

[Seylan et al., 2010] Inanç Seylan, Enrico Franconi, and Jos
de Bruijn. Optimal rewritings in definitorially complete
description logics. In Description Logics, 2010.

[ten Cate et al., 2006] Balder ten Cate, Willem Conradie,
Maarten Marx, and Yde Venema. Definitorially complete
description logics. In KR, pages 79–89, 2006.

[Tobies, 2001] Stephan Tobies. Complexity Results and
Practical Algorithms for Logics in Knowledge Represen-
tation. PhD thesis, RWTH-Aachen, 2001.

	Introduction
	Preliminaries
	Constructive Interpolation with Tableaux
	Results on Beth Definability
	Discussion

